
osa Documentation
Release 0.1.5

Sergey Bozhenkov

October 07, 2013

CONTENTS

1 Using 3

2 Structure 7

3 API index 9
3.1 Client . 9
3.2 WSDL parser . 11
3.3 Methods wrapper . 14
3.4 XML types . 16
3.5 SOAP constants . 19

4 License 21
4.1 Scio license . 21

5 Indices and tables 23

Python Module Index 25

Python Module Index 27

Index 29

i

ii

osa Documentation, Release 0.1.5

osa is a fast/slim library to consume WSDL 1.1/SOAP 1.1 services. It is created with the following
three requirements in mind: fast calls, small memory footprint and convenience of use. I was
not able to find a library that meets all my requirements, especially for large messages (millions
of elements). Therefore I created this library by combining ideas found in suds (nice printing),
soaplib (serialization/deserialization) and Scio (WSDL 1.1 parsing).

At the moment the library is limited to wrapped document/literal SOAP 1.1 convention. To in-
clude other call conventions one has to extend the to_xml() and from_xml() methods of the
Message class. The structure of the library is briefly explained here. The XML processing is
performed with the help of cElementTree module.

To install the library please do the usual Python magic:

>>> python setup.py install

Online help is available for all classes, please see also section Using for examples.

Contents:

CONTENTS 1

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://fedorahosted.org/suds/
https://github.com/arskom/soaplib
http://pypi.python.org/pypi/Scio/0.9.1
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

osa Documentation, Release 0.1.5

2 CONTENTS

CHAPTER

ONE

USING

To use the library do the import:

>>> import osa

This exposes the top level class Client. It the only one class used to consume a service by a normal
user. The client is initialized by full address of a WSDL 1.1 document:

>>> cl = osa.Client("http://.../HelloWorldService?wsdl")

Convenience print functions are available at several levels, e.g. to find information about the client
one can enter:

>>> cl

which returns names of all found services in the WSDL 1.1 document and location of the service:

service HelloWorldService from:
http://.../HelloWorldService?wsdl

The top level client is a container for class definitions constructed from XML types in the supplied
WSDL 1.1 focument and for remote method wrappers. All types are contained in cl.types and
all methods are available through cl.service. It is again possible to inspect them by printing:

>>> cl.types

which lists all known types and help if available:

Person
no documentation

Name
no documentation

...

Similarly:

3

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

osa Documentation, Release 0.1.5

>>> cl.service

prints all found methods and there short description if available:

sayHello
str[] result | None = sayHello(sayHello msg)
str[] result | None = sayHello(Person person , int time...

echoString
str result = echoString(echoString msg)
str result = echoString(str msg)
str result = echoString...
...

It is worth noting once more that if any documentation is available in the initial WSDL 1.1 docu-
ment it is propagated to types and methods.

To create an instance of a type in cl.types is easy (note that tab completion works both for
types and methods):

>>> person = cl.types.Person()

To inspect the new instance simply print it:

>>> person
(Person){
name = None (Name)
weight = None (int)
age = None (int)
height = None (int)
}

As can be seen all attributes of the new instance are empty, i.e. they are None. Expected types of
attributes are given after None in the brackets. Sometimes it useful to initialize immediately all
obligatory (non-nillable) attributes. To do this one can use deep keyword to class constructors:

>>> person = cl.types.Person(deep = True)

which initializes the whole hierarchy:

(Person){
name = (Name){

firstName =
lastName =

}
weight = 0
age = 0
height = 0
}

The attributes can be set with the usual dot-convention:

4 Chapter 1. Using

http://www.w3.org/TR/wsdl

osa Documentation, Release 0.1.5

>>> person.name.firstName = "Osa"
>>> person.name.lastName = "Wasp"

To call a method one can access it directly from :py:attr‘cl.service‘. Help to a method can be
viewed by simply printing its doc (ipython style):

>>> cl.service.sayHello ?

This shows possible call signatures and gives help from the WSDL 1.1 document:

Type: Method
Base Class: <class ’osa.methods.Method’>
String Form: str[] result | None = sayHello(sayHello msg)
Namespace: Interactive
File: /usr/local/lib/python2.6/site-packages/osa-0.1-py2.6.
egg/osa/methods.py
Docstring:

str[] result | None = sayHello(sayHello msg)
str[] result | None = sayHello(Person person , int times)
str[] result | None = sayHello(person=Person , times=int)

says hello to person.name.firstName given number of times
illustrates usage of compex types

...

It is possible to call any method in four different formats:

• single input parameter with proper wrapper message for this functions

• expanded positional parameters: children of the wrapper message

• expanded keyword parameters

• mixture of positional and keyword parameters.

The help page shows all possible signatures with explained types. On return the message is ex-
panded so that a real output is returned instead of the wrapper. The return type is also shown in the
help. Please note, that lists are used in place of arrays for any types, this is shown by brackets [].
Finally, let’s make the call:

>>> cl.service.sayHello(person, 5)
[’Hello, Osa’, ’Hello, Osa’, ’Hello, Osa’, ’Hello, Osa’, ’Hello, Osa’]

The library can also handle XML anyType properly in most of the cases: any variable chooses
the suitable type from the service and uses it to do the conversion from XML to Python.

The library can be used with large messages, e.g about 8 millions of double elements are processed
in few tens of seconds only. The transient peak memory consumption for such a message is of the
order of 1 GB.

5

http://www.w3.org/TR/wsdl

osa Documentation, Release 0.1.5

6 Chapter 1. Using

CHAPTER

TWO

STRUCTURE

This section briefly explains the library structure. It is useful for those who wants to improve it.

The top level Client class is simply a container. On construction it creates an instance of WSDL-
Parser and processes the service description by calling its methods parse(). Afterwards the
parser is deleted. As a result of the initial processing two dictionaries are available: containing
newly created types and methods.

Types and methods are generated by the WSDLParser, for types it internally uses XMLSchema-
Parser. The types are constructed by using meta-class ComplexTypeMeta. This meta-class has
a special convention to pass children names and types. The methods are wrapped as instances of
Method class. The latter class has a suitable __call__()method and contains information about
input and output arguments as instances of the Message class in attributes input and output
correspondingly.

The top level Client class creates sub-containers for types and methods: types and service.
This containers have special print function to display help. Types and methods are set as direct
attributes of the corresponding containers, so that the usual dot-access and tab-completion are
possible. The attributes of the types container are class definitions, so that to create a new
instance one has to add the brackets (). The attributes of the service container are callable
method wrappers.

To allow a correct anyType processing the WSDLParser updates special dictionary of XMLAny
class by all discovered classes.

Every function call is processed by __call__() method of a Method instance. The call method
uses the input message input to convert its arguments to XML string (to_xml()). Afterwards
urllib2 is used to send the request to service. The service response is deserialized by using the
output message output (from_xml()). The deserialized result is returned to the user.

The input points for serialization is a Message instance. The message first analyzes the input
arguments and if required wraps them into a top level message. Afterwards to_xml() methods
of al children are called with a proper XML element. The children create XML elements for them
and propagate the call to their children and so on. The process is continued until the bottom of
the hierarchy is reached. Only the primitive types set the real text tag. The deserialization process
is similar: in this case from_xml() is propagated and all children classes are constructed. In

7

osa Documentation, Release 0.1.5

addition the output message parser expands the response wrapper, so that the user sees the result
without the shell.

At the moment only wrapped document/literal convention is realized. The format of the message
is determined by to_xml() and from_xml(). Therefore, to introduce other conventions (rpc,
encoded) one has to modify these two methods only.

The library uses cElementTree module for XML processing. This module has about 2 times
lower memory footprint as the usual lxml library.

8 Chapter 2. Structure

CHAPTER

THREE

API INDEX

3.1 Client

Top level access to SOAP service.

class osa.client.Client(wsdl_url)
Bases: object

Top level class to talk to soap services.

This is an access point to service functionality. The client accepts WSDL address and uses
osa.wsdl.WSDLParser to get all defined types and operations. The types are set to
client.types and operations are set to self.service.

To examine present types or operations simply print (or touch repr):

>>> client.types

or:

>>> client.service

correspondingly.

To create type simply call:

>>> client.types.MyTypeName().

Class constructor will also create all obligatory (non-nillable) children. To call an operation:

>>> client.service.MyOperationName(arg1, arg2, arg3, ...),

where arguments are of required types. Arguments can also be passed as keywords or a
ready wrapped message.

If any help is available in the WSDL document it is propagated to the types and operations,
see e.g. help client.types.MyTypeName. In addition the help page on an operation
displays its call signature.

9

osa Documentation, Release 0.1.5

Nice printing is also available for all types defined in client.types:

>>> print(client.types.MyTypeName())

Warning: Only document/literal wrapped convention is implemented at the moment.

In reality client.types and client.service are simply containers. The
content of these containers is set from results of parsing the
wsdl document by osa.wsdl.WSDLParser.get_types and
osa.wsdl.WSDLParser.get_services correspondingly. See also
osa.wsdl.WSDLParser.parse.

The client.types container consists of auto generated (by
osa.xmlschema.XMLSchemaParser) class definitions. So that a call to a member
returns and instance of the new type. New types are auto-generated according to a special
convention by metaclass osa.xmltypes.ComplexTypeMeta.

The client.service container consists of methods wrapers methods.Method. The method
wrapper is callable with free number of parameters. The input and output requirements of
a method are contained in methods.Message instances osa.methods.Method.input
and osa.methods.Method.output correspondingly. On a call a method converts the
input to XML by using Method.input, sends request to the service and finally decodes the
response from XML by Method.output.

Parameters wsdl_url : str

Address of wsdl document to consume.

Methods

create_services_containers()
Create methods containers for easy access.

As a result of this method, self.service with available operations is created. If there are
several services in the supplied wsdl, than self.service_1, self.service_2 are created.

create_types_container()
Create types container class for easy access.

As a result of this method, self.types contains all the defined classes with their short
names, i.e. without namespace prefix. If a name collision is detected, the second and
all consecutive classes are appended with a counter.

osa.client.str_for_containers(self)
Nice printing for types and method containers.

Containers must have _container attribute containing all elements to be printed.

10 Chapter 3. API index

osa Documentation, Release 0.1.5

3.2 WSDL parser

Conversion of WSDL documents into Python.

class osa.wsdl.WSDLParser(wsdl_url)
Bases: object

Parser to get types and methods defined in the document.

Methods

get_bindings(operations)
Check binding document/literal and http transport.

If any of the conditions is not satisfied the binding is dropped, i.e. not present in the
return value. This also sets soapAction and use_parts of the messages.

Parameters operations : dict as returned by get_operations

Returns out : dict

Map similar to that from get_operations but with binding names in-
stead of portType names.

get_messages(types)
Construct messages from message section.

Parameters types : dictionary of types

Types as returned by get_types().

Returns out : dict

Map message name -> Message instance

get_operations(messages)

Get list of operations with messages from portType section.

Parameters messages : dict

Dictionary of message from get_messages.

Returns out : dict

{portType -> {operation name -> Method instance}} The method
here does not have location.

get_services(bindings)
Find all services an make final list of operations.

This also sets location to all operations.

3.2. WSDL parser 11

osa Documentation, Release 0.1.5

Parameters bindings : dic from get_bindings.

Returns out : dict

Dictionary {service -> {operation name -> method}.

get_types()
Constructs a map of all types defined in the document.

Returns out : dict

A map of found types {type_name : complex class}

parse()
Do parsing, return types, services.

Returns out : (types, services)

Conversion of XML Schema types into Python classes.

class osa.xmlschema.XMLSchemaParser(root, wsdl_url=None)
Bases: object

Parser to get types from an XML Schema.

Methods

static convert_xmltypes_to_python(xtypes)
Convert xml types definitions in the dictionary into Python classes.

Parameters xtypes : dictionary name -> xml element

A dictionary as returned by get_list_of_defined_types.

Returns out : dictionary name -> Python class

static create_alias(name, alias_type, xtypes, types)
Create a copy of known class with proper namespace.

Parameters name : str

Name of the new class.

alias_type : str

The target alias

xtypes : dictionary class name -> xml node

types : dictionary of classes

The new aliases is appended here.

static create_complex_class(name, element, xtypes, types)
Create complex class.

12 Chapter 3. API index

osa Documentation, Release 0.1.5

Parameters name : str

Class name

element : xml element

Class node.

xtypes : dictionary class name -> xml node

types : dictionary class name -> Python class

The result is appended here.

static create_empty_class(name, types)
Create empty class, i.e. no children.

Parameters name : str

Name of the new class.

alias_type : str

The target alias

xtypes : dictionary class name -> xml node

types : dictionary of classes

The new aliases is appended here.

static create_string_enumeration(name, element, types)
Creates a copy of XMLStringEnumertion with properly set allowed values.

The created class is attached to types.

Parameters name : str

Name of the new class.

element : etree.Element

XML description of the enumeration

types : dictionary of classes

static create_type(name, element, xtypes, types)
Creates proper type for the element.

The created types is appended to the types.

Parameters name : str

Class name

element : xml element

Class node.

3.2. WSDL parser 13

osa Documentation, Release 0.1.5

xtypes : dictionary class name -> xml node

types : dictionary class name -> Python class

The result is appended here.

generate_classes()
Generate Python classes from this schema.

Returns out : dictionary

Dictionary of types {ns}name -> Python class

static get_doc(x)
Extract documentation from element.

Parameters x : xml element

Returns out : str

Documentation from whatever found <documentation> out </docu-
mentation>

get_list_of_defined_types()
Construct a dictionary: type name -> xml node

Types are given by complexType, simpleType or element. Types from imported
schemas are included as well. Type names include namespaces.

Returns out : dict

A dictionary of defined types.

static get_type_by_name(name, xtypes, types)
Return requested class from primmap or as created from xml.

Parameters name : str

Type name.

xtypes : dict

List of xml elements to look in.

types : dict

List of already created classes to look in.

Returns out : class

3.3 Methods wrapper

Python class for input/output messages.

14 Chapter 3. API index

osa Documentation, Release 0.1.5

class osa.message.Message(name, parts, use_parts=None)
Bases: object

Message for input and output of service operations.

Messages perform conversion of Python to xml and backwards of the calls and returns.

At the moment only document/literal wrapped is implemented.

Parameters name : str

Namespace qualified name of the message.

parts : list

List of message parts in the form (part name, part type class). This
description is usually found in message part of a WSDL document.
Note, that due to binding section not all message parts are used for
encoding. The parts that are used are given be use_parts.

use_parts : list

List of parts to be really used for encoding/decoding. This comes
from wsdl binding section. Yes, they are not quite from this planet.
In any case, in the present implementation I assume doc/literal
wrapped and use only the very first part from this member for en-
coding.

Methods

from_xml(body, header=None)
Convert from xml message to Python.

to_xml(*arg, **kw)
Convert from Python into xml message.

This function accepts parameters as they are supplied to the method call and tries to
convert it to a message. Arguments can be in one of four forms:

•1 argument of proper message type for this operation

•positional arguments - members of the proper message type

•keyword arguments - members of the message type.

•a mixture of positional and keyword arguments.

Keyword arguments must have at least one member: _body which contains
etree.Element to append the conversion result to.

SOAP operation class.

3.3. Methods wrapper 15

osa Documentation, Release 0.1.5

class osa.method.Method(name, input, output, doc=None, action=None, loca-
tion=None)

Bases: object

Definition of a single SOAP method, including location, action, name and input and output
classes.

Parameters name : str

Name of operation

input : osa.message.Message instance

Input message.

output : osa.message.Message instance

Output message.

doc : str, optional - default to None

Documentation of the method as found in portType section of
WSDL.

action : str

Soap action string.

location : str

Location as found in service part of WSDL.

3.4 XML types

class osa.xmltypes.XMLType
Bases: object

Base xml schema type.

It defines basic functions to_xml and from_xml.

Methods

classmethod from_file(fname)
Create an instance from file.

Parameters fname : str

Filename to parse.

Returns out : new instance

16 Chapter 3. API index

osa Documentation, Release 0.1.5

from_xml(element)
Function to convert from xml to python representation.

This is basic function and it is suitable for complex types. Primitive types must overload
it.

Parameters element : etree.Element

Element to recover from.

to_file(fname)
Save to file as an xml string.

Parameters fname : str

Filename to use.

to_xml(parent, name)
Function to convert to xml from python representation.

This is basic function and it is suitable for complex types. Primitive types must overload
it.

Parameters parent : etree.Element

Parent xml element to append this child to.

name : str

Full qualified (with namespace) name of this element.

class osa.xmltypes.XMLString
Bases: osa.xmltypes.XMLType, str

Methods

class osa.xmltypes.XMLInteger
Bases: osa.xmltypes.XMLType, int

Methods

class osa.xmltypes.XMLDouble
Bases: osa.xmltypes.XMLType, float

Methods

class osa.xmltypes.XMLBoolean
Bases: osa.xmltypes.XMLType, str

3.4. XML types 17

osa Documentation, Release 0.1.5

Methods

class osa.xmltypes.XMLAny
Bases: osa.xmltypes.XMLType, str

Methods

class osa.xmltypes.XMLDecimal
Bases: osa.xmltypes.XMLType, decimal.Decimal

Methods

class osa.xmltypes.XMLDate(*arg)
Bases: osa.xmltypes.XMLType

Methods

from_xml(element)
expect ISO formatted dates

class osa.xmltypes.XMLDateTime(*arg)
Bases: osa.xmltypes.XMLType

Methods

class osa.xmltypes.ComplexTypeMeta
Metaclass to create complex types on the fly.

__new__(name, bases, attributes)
Method to create new types.

_children attribute must be present in attributes. It describes the arguments to be present
in the new type. The he _children argument must be a list of the form: [{‘name’:’arg1’,
‘min’:1, ‘max’:1, ‘type’:ClassType}, ...]

Parameters cls : this class

name [str] Name of the new type.

bases [tuple] List of bases classes.

attributes [dict] Attributes of the new type.

18 Chapter 3. API index

osa Documentation, Release 0.1.5

3.5 SOAP constants

3.5. SOAP constants 19

osa Documentation, Release 0.1.5

20 Chapter 3. API index

CHAPTER

FOUR

LICENSE

I release the library under terms of LGPL. I borrowed some ideas from suds, soaplib and Scio
libraries. The first two are also released under LGPL. The last one has its own license, the text of
which and the copyright are given below.

If someone knows better about compatibility of all these licenses, please let me know.

4.1 Scio license

Please note, that almost no original Scio code is preserved. Only algorithm of WSDL 1.1 parsing
is partially preserved.

Copyright (c) 2011, Leapfrog Online, LLC
All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the Leapfrog Online, LLC nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

21

http://www.gnu.org/licenses/lgpl.html
https://fedorahosted.org/suds/
https://github.com/arskom/soaplib
http://pypi.python.org/pypi/Scio/0.9.1
http://www.gnu.org/licenses/lgpl.html
http://pypi.python.org/pypi/Scio/0.9.1
http://www.w3.org/TR/wsdl

osa Documentation, Release 0.1.5

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22 Chapter 4. License

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

23

osa Documentation, Release 0.1.5

24 Chapter 5. Indices and tables

PYTHON MODULE INDEX

o
osa.client, 9
osa.message, 14
osa.method, 15
osa.wsdl, 11
osa.xmlschema, 12

25

osa Documentation, Release 0.1.5

26 Python Module Index

PYTHON MODULE INDEX

o
osa.client, 9
osa.message, 14
osa.method, 15
osa.wsdl, 11
osa.xmlschema, 12

27

osa Documentation, Release 0.1.5

28 Python Module Index

INDEX

Symbols
__new__() (osa.method.osa.xmltypes.ComplexTypeMeta

method), 18

C
Client (class in osa.client), 9
convert_xmltypes_to_python()

(osa.xmlschema.XMLSchemaParser
static method), 12

create_alias() (osa.xmlschema.XMLSchemaParser
static method), 12

create_complex_class()
(osa.xmlschema.XMLSchemaParser
static method), 12

create_empty_class()
(osa.xmlschema.XMLSchemaParser
static method), 13

create_services_containers() (osa.client.Client
method), 10

create_string_enumeration()
(osa.xmlschema.XMLSchemaParser
static method), 13

create_type() (osa.xmlschema.XMLSchemaParser
static method), 13

create_types_container() (osa.client.Client
method), 10

F
from_file() (osa.xmltypes.XMLType class

method), 16
from_xml() (osa.message.Message method), 15
from_xml() (osa.xmltypes.XMLDate method),

18
from_xml() (osa.xmltypes.XMLType method),

16

G
generate_classes()

(osa.xmlschema.XMLSchemaParser
method), 14

get_bindings() (osa.wsdl.WSDLParser
method), 11

get_doc() (osa.xmlschema.XMLSchemaParser
static method), 14

get_list_of_defined_types()
(osa.xmlschema.XMLSchemaParser
method), 14

get_messages() (osa.wsdl.WSDLParser
method), 11

get_operations() (osa.wsdl.WSDLParser
method), 11

get_services() (osa.wsdl.WSDLParser method),
11

get_type_by_name()
(osa.xmlschema.XMLSchemaParser
static method), 14

get_types() (osa.wsdl.WSDLParser method), 12

M
Message (class in osa.message), 14
Method (class in osa.method), 15

O
osa.client (module), 9
osa.message (module), 14
osa.method (module), 15
osa.wsdl (module), 11
osa.xmlschema (module), 12
osa.xmltypes.ComplexTypeMeta (class in

osa.method), 18

29

osa Documentation, Release 0.1.5

P
parse() (osa.wsdl.WSDLParser method), 12

S
str_for_containers() (in module osa.client), 10

T
to_file() (osa.xmltypes.XMLType method), 17
to_xml() (osa.message.Message method), 15
to_xml() (osa.xmltypes.XMLType method), 17

W
WSDLParser (class in osa.wsdl), 11

X
XMLAny (class in osa.xmltypes), 18
XMLBoolean (class in osa.xmltypes), 17
XMLDate (class in osa.xmltypes), 18
XMLDateTime (class in osa.xmltypes), 18
XMLDecimal (class in osa.xmltypes), 18
XMLDouble (class in osa.xmltypes), 17
XMLInteger (class in osa.xmltypes), 17
XMLSchemaParser (class in osa.xmlschema),

12
XMLString (class in osa.xmltypes), 17
XMLType (class in osa.xmltypes), 16

30 Index

	Using
	Structure
	API index
	Client
	WSDL parser
	Methods wrapper
	XML types
	SOAP constants

	License
	Scio license

	Indices and tables
	Python Module Index
	Python Module Index
	Index

